The Complexity of Colouring Circle Graphs

نویسنده

  • Walter Unger
چکیده

We study the complexity of the colouring problem for circle graphs. We will solve the two open questions of [Un88], where first results were presented. 1. Here we will present an algorithm which solves the 3-colouring problem of circle graphs in time O(n log(n)). In [Un88] we showed that the 4-colouring problem for circle graphs is NP-complete. 2. If the largest clique of a circle graph has size k then the 2.k1-colouring is NP-complete. Such circle graphs are 2k-colourable [Un88]. Further results and improvements of [Un88] complete the knowledge of the complexity of the colouring problem of circle graphs. Classification: algorithms and data structures, computationM complexity 1 I n t r o d u c t i o n A circle graph is an undirected graph which is an intersection graph of a set of chords in one circle. The vertex set of an intersection graph of a set of chords is that set of chords. Two vertices are joined by an edge iff the representing chords intersect each other. An example of such an intersection graph is given in Figure 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the minimum clique cover and other hard problems in subtree filament graphs

Subtree filament graphs are the intersection graphs of subtree filaments in a tree. This class of graphs contains subtree overlap graphs, interval filament graphs, chordal graphs, circle graphs, circular-arc graphs, cocomparability graphs, and polygon-circle graphs. In this paper we show that, for circle graphs, the clique cover problem is NP-complete and the h-clique cover problem for fixed h ...

متن کامل

Circular consecutive choosability of graphs

Abstract This paper considers list circular colouring of graphs in which the colour list assigned to each vertex is an interval of a circle. The circular consecutive choosability chcc(G) of G is defined to be the least t such that for any circle S(r) of length r ≥ χc(G), if each vertex x of G is assigned an interval L(x) of S(r) of length t, then there is a circular r-colouring f of G such that...

متن کامل

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

We consider a natural restriction of the List Colouring problem: k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We a...

متن کامل

On colouring (2P2, H)-free and (P5, H)-free graphs

The Colouring problem asks whether the vertices of a graph can be coloured with at most $k$ colours for a given integer $k$ in such a way that no two adjacent vertices receive the same colour. A graph is $(H_1,H_2)$-free if it has no induced subgraph isomorphic to $H_1$ or $H_2$. A connected graph $H_1$ is almost classified if Colouring on $(H_1,H_2)$-free graphs is known to be polynomial-time ...

متن کامل

On List Colouring and List Homomorphism of Permutation and Interval Graphs

List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total number of colours. More generally we give a polynomial-time algorithm that solves the listhomomorphism problem to any fixed target graph for a large cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992